首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:An Improved Sketching Algorithm for Edit Distance
  • 本地全文:下载
  • 作者:Jin, Ce ; Nelson, Jelani ; Wu, Kewen
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:187
  • 页码:45:1-45:16
  • DOI:10.4230/LIPIcs.STACS.2021.45
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We provide improved upper bounds for the simultaneous sketching complexity of edit distance. Consider two parties, Alice with input x â^^ Σⁿ and Bob with input y â^^ Σⁿ, that share public randomness and are given a promise that the edit distance ed(x,y) between their two strings is at most some given value k. Alice must send a message sx and Bob must send sy to a third party Charlie, who does not know the inputs but shares the same public randomness and also knows k. Charlie must output ed(x,y) precisely as well as a sequence of ed(x,y) edits required to transform x into y. The goal is to minimize the lengths sx , sy of the messages sent. The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method of Chakraborty, Goldenberg, and Koucký (STOC 2016), achieves a maximum message length of Ã.(k⁸) bits, where Ã.(â<.) hides poly(log n) factors. In this work we build upon Belazzougui and Zhang’s protocol and provide an improved analysis demonstrating that a slight modification of their construction achieves a bound of Ã.(k³).
  • 关键词:edit distance; sketching
国家哲学社会科学文献中心版权所有