首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Meta-analysis of Educational Data Mining for Predicting Students Performance in Programming
  • 本地全文:下载
  • 作者:Devraj Moonsamy ; Nalindren Naicker ; Timothy T. Adeliyi
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:2
  • 页码:97-104
  • DOI:10.14569/IJACSA.2021.0120213
  • 出版社:Science and Information Society (SAI)
  • 摘要:An essential skill amid the 4th industrial revolution is the ability to write good computer programs. Therefore, higher education institutions are offering computer programming as a module not only in computer related programmes but other programmes as well. However, the number of students that underperform in programming is significantly higher than the non-programming modules. It is, therefore, crucial to be able to accurately predict the performance of students pursuing programming since this will help in identifying students that may underperform and the necessary support interventions can be timeously put in place to assist these students. The objective of this study is therefore to obtain the most effective Educational Data Mining approaches used to identify those students that may underperform in computer programming. The PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) approach was used in conducting the meta-analysis. The databases searched were, namely, ACM, Google Scholar, IEEE, Pro-Quest, Science Direct and Scopus. A total of 11 scientific research publications were included in the meta-analysis for this study from 220 articles identified through database searching. The residual amount of heterogeneity was high (τ2 = 0.03; heterogeneity I2 = 99.46% with heterogeneity chi-square = 1210.91, a degree of freedom = 10 and P = <0.001). The estimated pooled performance of the algorithms was 24% (95% CI (13%, 35%). Meta-regression analysis indicated that none of the moderators included have influenced the heterogeneity of studies. The result of effect estimates against its standard error indicated publication bias with a P-value of 0.013. These meta-analysis findings indicated that the pooled estimate of algorithms is high.
  • 关键词:Data mining; educational data mining; machine learning; performance; programming
国家哲学社会科学文献中心版权所有