期刊名称:Computational Water, Energy, and Environmental Engineering
印刷版ISSN:2168-1562
电子版ISSN:2168-1570
出版年度:2020
卷号:9
期号:4
页码:185-215
DOI:10.4236/cweee.2020.94012
出版社:Scientific Research Publishing
摘要:The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation in non-arable land and being able to grow in wastewater or seawater. That is why; microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed Photobioreactos (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, even though it is costly. To make the process viable, the growth of microalgae for biofuel production should be cost-effective. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO2 concentration, pH and salinity, light intensity and quality, temperature and finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study on these growth parameters is needed. In the present study, we reviewed and evaluated these growth influencing factors in an extensive way to optimize biofuel production.