首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Generalized Bernoulli process with long-range dependence and fractional binomial distribution
  • 本地全文:下载
  • 作者:Jeonghwa Lee
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2021
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1515/demo-2021-0100
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Bernoulli process is a finite or infinite sequence of independent binary variables, X i , i = 1, 2, · · ·, whose outcome is either 1 or 0 with probability P ( X i = 1) = p , P ( X i = 0) = 1 – p , for a fixed constant p ∈ (0, 1). We will relax the independence condition of Bernoulli variables, and develop a generalized Bernoulli process that is stationary and has auto-covariance function that obeys power law with exponent 2 H – 2, H ∈ (0, 1). Generalized Bernoulli process encompasses various forms of binary sequence from an independent binary sequence to a binary sequence that has long-range dependence. Fractional binomial random variable is defined as the sum of n consecutive variables in a generalized Bernoulli process, of particular interest is when its variance is proportional to n 2 H , if H ∈ (1/2, 1).
国家哲学社会科学文献中心版权所有