首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Clustering and Classification in Option Pricing
  • 本地全文:下载
  • 作者:Nikola Gradojevic ; Dragan Kukolj ; Ramazan Gencay
  • 期刊名称:Mutis
  • 印刷版ISSN:2256-1498
  • 出版年度:2011
  • 卷号:3
  • 期号:2
  • 页码:109-128
  • 出版社:Universidad Jorge Tadeo Lozano
  • 摘要:This paper reviews the recent option pricing literature and investigates how clustering and classification can assist option pricing models. Specifically, we consider non-parametric modular neural network (MNN) models to price the S&P-500 European call options. The focus is on decomposing and classifying options data into a number of sub-models across moneyness and maturity ranges that are processed individually. The fuzzy learning vector quantization (FLVQ) algorithm we propose generates decision regions (i.e., option classes) divided by ‘intelligent’ classification boundaries. Such an approach improves generalization properties of the MNN model and thereby increases its pricing accuracy.
  • 关键词:Option Pricing;Clustering;Parametric Methods;Non-parametric Methods;Fuzzy Logic
国家哲学社会科学文献中心版权所有