摘要:This paper examines the shape effect of nanoparticles in the flow of A l 2 O 3 − silicon oil nanofluid around a rotating disk which extends radially. Magnetic field and radiation energy results are also added. In this research, five distinct shaped A l 2 O 3 nanoparticles, sphere, brick, cylinder, platelet and blade have been used. All five distinct shaped nanoparticles are assumed to have equal diameter d p = 45 n m . Each form is suspended in equal volume. The related non-linear equations have been implied and reformatted by Von Karman transformations out under boundary layer conditions. The aforementioned non-linear differential equations is evaluated more by shooting testing method, including the Iterative Power Series (IPS) methodology. The progress of flow patterns with potential consequences for control parameters is mathematically dealt and presented graphically. The present analysis is validated comparing with the earlier described research. In fact, the nanofluid containing platelet-shaped nanoparticles seems to have the maximum dynamic viscosity and nanoparticles that are blade-shaped has the strongest thermal conductivity. Friction coefficient is found to be higher in the strength of magnetic field and when disk is radially stretched. Heat transfer rate is greatly enhanced on neglecting the magnetic field and radiation effects.
关键词:Nanofluid ; Radiation ; Rotating disk ; Silicon oil ; Nanoparticle shape effects ; Iterative power series method