期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2021
卷号:12
期号:3
页码:50-55
DOI:10.14569/IJACSA.2021.0120306
出版社:Science and Information Society (SAI)
摘要:Usually, time series data suffers from high percentage of missing values which is related to its nature and its collection process. This paper proposes a data imputation technique for imputing the missing values in time series data. The Fuzzy Gaussian membership function and the Fuzzy Triangular membership function are proposed in a data imputation algorithm in order to identify the best imputation for the missing values where the membership functions were used to calculate weights for the data values of the nearest neighbor’s before using them during imputation process. The evaluation results show that the proposed technique outperforms traditional data imputation techniques where the triangular fuzzy membership function has shown higher accuracy than the gaussian membership function during evaluation.