首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Fuzzy based Techniques for Handling Missing Values
  • 本地全文:下载
  • 作者:Malak El-Bakry ; Farid Ali ; Ayman El-Kilany
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:3
  • 页码:50-55
  • DOI:10.14569/IJACSA.2021.0120306
  • 出版社:Science and Information Society (SAI)
  • 摘要:Usually, time series data suffers from high percentage of missing values which is related to its nature and its collection process. This paper proposes a data imputation technique for imputing the missing values in time series data. The Fuzzy Gaussian membership function and the Fuzzy Triangular membership function are proposed in a data imputation algorithm in order to identify the best imputation for the missing values where the membership functions were used to calculate weights for the data values of the nearest neighbor’s before using them during imputation process. The evaluation results show that the proposed technique outperforms traditional data imputation techniques where the triangular fuzzy membership function has shown higher accuracy than the gaussian membership function during evaluation.
  • 关键词:Time series data; fuzzy logic; membership functions; machine learning; missing values
国家哲学社会科学文献中心版权所有