首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Hybrid Model for Documents Representation
  • 本地全文:下载
  • 作者:Dina Mohamed ; Ayman El-Kilany ; Hoda M. O. Mokhtar
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:3
  • 页码:317-324
  • DOI:10.14569/IJACSA.2021.0120339
  • 出版社:Science and Information Society (SAI)
  • 摘要:Text representation is a critical issue for exploring the insights behind the text. Many models have been developed to represent the text in defined forms such as numeric vectors where it would be easy to calculate the similarity between the documents using the well-known distance measures. In this paper, we aim to build a model to represent text semantically either in one document or multiple documents using a combination of hierarchical Latent Dirichlet Allocation (hLDA), Word2vec, and Isolation Forest models. The proposed model aims to learn a vector for each document using the relationship between its words’ vectors and the hierarchy of topics generated using the hierarchical Latent Dirichlet Allocation model. Then, the isolation forest model is used to represent multiple documents in one representation as one profile to facilitate finding similar documents to the profile. The proposed text representation model outperforms the traditional text representation models when applied to represent scientific papers before performing content-based scientific papers recommendation for researchers.
  • 关键词:Document representation; latent dirichlet allocation; hierarchical latent dirichlet allocation; Word2vec; Isolation Forest
国家哲学社会科学文献中心版权所有