期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2021
卷号:12
期号:3
页码:464-471
DOI:10.14569/IJACSA.2021.0120355
出版社:Science and Information Society (SAI)
摘要:Attack by spreading malware is a dangerous attack form that is very difficult to detect and prevent. Attack techniques that spread malware through users and then escalate privileges in the system are increasingly used by attackers. The three main methods and techniques for tracking and detecting malware that is being currently studied and applied include signature-based, behavior-based, and hybrid techniques. In particular, the behavior-based technique with the support of machine learning algorithms has given high efficiency. On the other hand, in reality, attackers often find various ways and techniques to hide behaviors of the malware based on the Portable Executable File Format (PE File) of the malware. This makes it difficult for surveillance systems to detect malware. From the above reasons, in this paper, we propose a malware detection method based on the PE File analysis technique using machine learning and deep learning algorithms. Our main contribution in this paper is proposing some features that represent abnormal behaviors of malware based on PE File and the efficiency of some machine learning algorithms in the classification process.