首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Regulation of Ras homolog family member G by microRNA-124 regulates proliferation and migration of human retinal pigment epithelial cells
  • 本地全文:下载
  • 作者:Jong Hwa Jun ; Myeong-Jin Son ; Hyun-Gyo Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-72360-5
  • 出版社:Springer Nature
  • 摘要:Uncontrolled retinal pigment epithelial (RPE) cell proliferation/migration contribute to the pathological tractional membrane development in proliferative vitreoretinopathy. Recent studies reported that microRNA (miR)-124 controls various cellular functions via the direct targeting of small Ras homolog family member G (RHOG). Therefore, we investigated the role of the neuron-specific miR-124 and RHOG in RPE cell proliferation/migration. Alterations in miR-124 and RhoG expression, as per cell confluence were evaluated through quantitative real-time PCR and western blotting, respectively. After transfection with miR-124, we quantified RPE cell viability and migration and observed cell polarization and lamellipodia protrusions. We evaluated the expression of RHOG/RAC1 pathway molecules in miR-124-transfected RPE cells. Endogenous miR-124 expression increased proportionally to RPE cell density, but decreased after 100% confluence. Overexpression of miR-124 decreased cell viability and migration, BrdU incorporation, and Ki-67 expression. Inhibition of endogenous miR-124 expression promoted RPE cell migration. Transfection with miR-124 reduced cell polarization, lamellipodia protrusion, and RHOG mRNA 3′ untranslated region luciferase activity. Like miR-124 overexpression, RhoG knockdown decreased RPE cell viability, wound healing, and migration, and altered the expression of cell cycle regulators. These results suggest that miR-124 could be a therapeutic target to alleviate fibrovascular proliferation in retinal diseases by regulating RPE proliferation/migration via RHOG.
国家哲学社会科学文献中心版权所有