期刊名称:Inteligencia Artificial : Ibero-American Journal of Artificial Intelligence
印刷版ISSN:1137-3601
电子版ISSN:1988-3064
出版年度:2021
卷号:24
期号:67
页码:18-35
DOI:10.4114/intartif.vol24iss67pp18-35
出版社:Spanish Association for Intelligence Artificial
摘要:This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA is an optimization algorithm that demonstrated promising results in solving many engineering problems. However, the local search process of BA lacks efficient exploitation due to the random assignment of search agents inside the neighborhoods, which weakens the algorithm’s accuracy and results in slow convergence especially when solving higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes the strength of the GOA to enhance the exploitation phase of the BA. To prove the effectiveness of the proposed algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption.
其他摘要:This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA is an optimization algorithm that demonstrated promising results in solving many engineering problems. However, the local search process of BA lacks efficient exploitation due to the random assignment of search agents inside the neighborhoods, which weakens the algorithm’s accuracy and results in slow convergence especially when solving higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes the strength of the GOA to enhance the exploitation phase of the BA. To prove the effectiveness of the proposed algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption.