首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Particle Swarm Optimization—An Adaptation for the Control of Robotic Swarms
  • 本地全文:下载
  • 作者:George Rossides ; Benjamin Metcalfe ; Alan Hunter
  • 期刊名称:Robotics
  • 电子版ISSN:2218-6581
  • 出版年度:2021
  • 卷号:10
  • 期号:2
  • 页码:58
  • DOI:10.3390/robotics10020058
  • 出版社:MDPI Publishing
  • 摘要:Particle Swarm Optimization (PSO) is a numerical optimization technique based on the motion of virtual particles within a multidimensional space. The particles explore the space in an attempt to find minima or maxima to the optimization problem. The motion of the particles is linked, and the overall behavior of the particle swarm is controlled by several parameters. PSO has been proposed as a control strategy for physical swarms of robots that are localizing a source; the robots are analogous to the virtual particles. However, previous attempts to achieve this have shown that there are inherent problems. This paper addresses these problems by introducing a modified version of PSO, as well as introducing new guidelines for parameter selection. The proposed algorithm links the parameters to the velocity and acceleration of each robot, and demonstrates obstacle avoidance. Simulation results from both MATLAB and Gazebo show close agreement and demonstrate that the proposed algorithm is capable of effective control of a robotic swarm and obstacle avoidance.
  • 关键词:particle swarm; PSO; swarm robotics; obstacle avoidance particle swarm ; PSO ; swarm robotics ; obstacle avoidance
国家哲学社会科学文献中心版权所有