摘要:In 2019, China issued the first national standard for vehicle driving cycle, in which China light-duty vehicle test cycle for passenger car (CLTC-P) is the driving cycle for light-duty passenger cars. CLTC-P is of great significance to the development of China’s automobile industry, and has a great impact on the development and calibration of vehicles of automobile enterprises. In this paper, firstly, the driving characteristics of CLTC-P are analyzed systematically. Then it is compared with the third-party navigation big data to prove the rationality and effectiveness. Finally, CLTC-P is compared with other legal cycles in terms of time, distance, speed, and acceleration characteristics. The result shows that by comparing the characteristics of CLTC-P with other typical cycles and the GIS weighted results, the CLTC-P is more in line with Chinese reality and is significantly different from other typical cycles.
其他摘要:In 2019, China issued the first national standard for vehicle driving cycle, in which China light-duty vehicle test cycle for passenger car (CLTC-P) is the driving cycle for light-duty passenger cars. CLTC-P is of great significance to the development of China’s automobile industry, and has a great impact on the development and calibration of vehicles of automobile enterprises. In this paper, firstly, the driving characteristics of CLTC-P are analyzed systematically. Then it is compared with the third-party navigation big data to prove the rationality and effectiveness. Finally, CLTC-P is compared with other legal cycles in terms of time, distance, speed, and acceleration characteristics. The result shows that by comparing the characteristics of CLTC-P with other typical cycles and the GIS weighted results, the CLTC-P is more in line with Chinese reality and is significantly different from other typical cycles.