首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Statistical research and modeling network traffic
  • 本地全文:下载
  • 作者:Tatiana Tatarnikova ; Igor Sikarev ; Vladimir Karetnikov
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:244
  • 页码:7002
  • DOI:10.1051/e3sconf/202124407002
  • 出版社:EDP Sciences
  • 摘要:The self-similarity properties of the considered traffic were checked on different time scales obtained on the available daily traffic data. An estimate of the tail severity of the distribution self-similar traffic was obtained by constructing a regression line for the additional distribution function on a logarithmic scale. The self-similarity parameter value, determined by the severity of the distribution “tail”, made it possible to confirm the assumption of traffic self-similarity. A review of models simulating real network traffic with a self-similar structure was made. Implemented tools for generating artificial traffic in accordance with the considered models. Made comparison of artificial network traffic generators according to the least squares method criterion for approximating the artificial traffic point values by the approximation function of traffic. Qualitative assessments traffic generators in the form of the software implementation complexity were taken into account, which, however, can be a subjective assessment. Comparative characteristics allow you to choose some generators that most faithfully simulate real network traffic. The proposed sequence of methods to study the network traffic properties is necessary to understand its nature and to develop appropriate models that simulate real network traffic.
  • 其他摘要:The self-similarity properties of the considered traffic were checked on different time scales obtained on the available daily traffic data. An estimate of the tail severity of the distribution self-similar traffic was obtained by constructing a regression line for the additional distribution function on a logarithmic scale. The self-similarity parameter value, determined by the severity of the distribution “tail”, made it possible to confirm the assumption of traffic self-similarity. A review of models simulating real network traffic with a self-similar structure was made. Implemented tools for generating artificial traffic in accordance with the considered models. Made comparison of artificial network traffic generators according to the least squares method criterion for approximating the artificial traffic point values by the approximation function of traffic. Qualitative assessments traffic generators in the form of the software implementation complexity were taken into account, which, however, can be a subjective assessment. Comparative characteristics allow you to choose some generators that most faithfully simulate real network traffic. The proposed sequence of methods to study the network traffic properties is necessary to understand its nature and to develop appropriate models that simulate real network traffic.
国家哲学社会科学文献中心版权所有