首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Stability of rectangular cantilever plates with high elasticity
  • 本地全文:下载
  • 作者:Mikhail Sukhoterin ; Sergey Baryshnikov ; Tatiana Knysh
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:244
  • 页码:4004
  • DOI:10.1051/e3sconf/202124404004
  • 出版社:EDP Sciences
  • 摘要:The problem of cantilever plate stability has been little studied due to the difficulty of solving the corresponding boundary problem. The known approximate solutions mainly concern only the first critical load. In this paper, stability of an elastic rectangular cantilever plate under the action of uniform pressure applied to its edge opposite to the clamped edge is investigated. Under such conditions, thin canopies of buildings made of new materials can be found at sharp gusts of wind in longitudinal direction. At present, cantilever nanoplates are widely used as key components of sensors to create nanoscale transistors where they are exposed to magnetic fields in the plate plane. The aim of the study is to obtain the critical force spectrum and corresponding forms of supercritical equilibrium. The deflection function is selected as a sum of two hyperbolic trigonometric series with adding special compensating summands to the main symmetric solution for the free terms of the decomposition of the functions in the Fourier series by cosines. The fulfillment of all conditions of the boundary problem leads to an infinite homogeneous system of linear algebraic equations with regard to unknown series coefficients. The task of the study is to create a numerical algorithm that allows finding eigenvalues of the resolving system with high accuracy. The search for critical loads (eigenvalues) giving a nontrivial solution of this system is carried out by brute force search of compressive load value in combination with the method of sequential approximations. For the plates with different side ratios, the spectrum of the first three critical loads is obtained, at which new forms of equilibrium emerge. An antisymmetric solution is obtained and studied. 3D images of the corresponding forms are presented.
  • 其他摘要:The problem of cantilever plate stability has been little studied due to the difficulty of solving the corresponding boundary problem. The known approximate solutions mainly concern only the first critical load. In this paper, stability of an elastic rectangular cantilever plate under the action of uniform pressure applied to its edge opposite to the clamped edge is investigated. Under such conditions, thin canopies of buildings made of new materials can be found at sharp gusts of wind in longitudinal direction. At present, cantilever nanoplates are widely used as key components of sensors to create nanoscale transistors where they are exposed to magnetic fields in the plate plane. The aim of the study is to obtain the critical force spectrum and corresponding forms of supercritical equilibrium. The deflection function is selected as a sum of two hyperbolic trigonometric series with adding special compensating summands to the main symmetric solution for the free terms of the decomposition of the functions in the Fourier series by cosines. The fulfillment of all conditions of the boundary problem leads to an infinite homogeneous system of linear algebraic equations with regard to unknown series coefficients. The task of the study is to create a numerical algorithm that allows finding eigenvalues of the resolving system with high accuracy. The search for critical loads (eigenvalues) giving a nontrivial solution of this system is carried out by brute force search of compressive load value in combination with the method of sequential approximations. For the plates with different side ratios, the spectrum of the first three critical loads is obtained, at which new forms of equilibrium emerge. An antisymmetric solution is obtained and studied. 3D images of the corresponding forms are presented.
国家哲学社会科学文献中心版权所有