摘要:The planning of integrated energy system is a very complex multi-objective, multi-constraint, nonlinear, random uncertain hybrid combination optimization problem, its planning and design process should consider not only the system capacity, energy exchange, energy storage, energy and other links between the interdependence, but also the interaction and mixing of cold, hot, electricity and other multi-energy flow, which is essentially a non-deterministic polynomial problem. Based on load prediction technology, combined with scene generation, multi-interconnected energy system modeling and other technologies, around the integrated energy system planning and design, consider the comprehensive evaluation of the whole life cycle, an optimal configuration of the integrated energy system is formed.
其他摘要:The planning of integrated energy system is a very complex multi-objective, multi-constraint, nonlinear, random uncertain hybrid combination optimization problem, its planning and design process should consider not only the system capacity, energy exchange, energy storage, energy and other links between the interdependence, but also the interaction and mixing of cold, hot, electricity and other multi-energy flow, which is essentially a non-deterministic polynomial problem. Based on load prediction technology, combined with scene generation, multi-interconnected energy system modeling and other technologies, around the integrated energy system planning and design, consider the comprehensive evaluation of the whole life cycle, an optimal configuration of the integrated energy system is formed.