摘要:3,4-Dinitrofurazanylfuroxan (DNTF) is a representative of the third-generation energetic materials with complex thermal decomposition behavior. Understanding thermal decomposition process of DNTF is of great significance for the safety of its production, storage and use. In this paper, the dynamic differential scanning calorimetry (DSC) test is carried out to study its thermal decomposition characteristics. The quench and reheat experiments and isothermal tests were performed to determine the types of decomposition reactions. A four-step consecutive reaction model, A→B→C→D→E, where each step is an N-order reaction was established for the decomposition process. The established kinetic models were verified by 250°C isothermal test.
其他摘要:3,4-Dinitrofurazanylfuroxan (DNTF) is a representative of the third-generation energetic materials with complex thermal decomposition behavior. Understanding thermal decomposition process of DNTF is of great significance for the safety of its production, storage and use. In this paper, the dynamic differential scanning calorimetry (DSC) test is carried out to study its thermal decomposition characteristics. The quench and reheat experiments and isothermal tests were performed to determine the types of decomposition reactions. A four-step consecutive reaction model, A→B→C→D→E, where each step is an N-order reaction was established for the decomposition process. The established kinetic models were verified by 250°C isothermal test.