摘要:Mercury heat pipe has the advantages of good thermal stability and low saturated vapor pressure, which is the best choice for the transition from water heat pipe to liquid metal heat pipe. The effects of heating power and heat pipe structure on start-up time and steady-state heat transfer performance of mercury heat pipe were studied by using transient thermal network model. The results showed that: 1) Increasing the length of condenser is beneficial to reducing the start-up time and thermal resistance; 2) Increasing the heating power or wall thickness will reduce the thermal resistance, but increase the start-up time, and increasing the porosity of wick is just the opposite; 3) Increasing the thickness of wick can increase both the start-up time and the thermal resistance.
其他摘要:Mercury heat pipe has the advantages of good thermal stability and low saturated vapor pressure, which is the best choice for the transition from water heat pipe to liquid metal heat pipe. The effects of heating power and heat pipe structure on start-up time and steady-state heat transfer performance of mercury heat pipe were studied by using transient thermal network model. The results showed that: 1) Increasing the length of condenser is beneficial to reducing the start-up time and thermal resistance; 2) Increasing the heating power or wall thickness will reduce the thermal resistance, but increase the start-up time, and increasing the porosity of wick is just the opposite; 3) Increasing the thickness of wick can increase both the start-up time and the thermal resistance.