摘要:At present, the existing indicator diagram can only be used for expost judgment and can not give early warning, and the influencing factors of pump inspection period are nonlinear, multi constrained and multi variable. In this paper, big data machine learning method is used to carry out relevant research. Firstly, around the influencing factors of pump inspection cycle, relevant data are collected and the evaluation index of pump inspection cycle is designed. Then, based on feature engineering technology, the production parameters of oil wells in different pump inspection periods are calculated to form the analysis sample set of pump inspection period. Finally, the early warning model of pump inspection period is established by using machine learning technology. The experimental results show that: the pump inspection cycle early warning model established by stochastic forest algorithm can identify the pump inspection status of single well, and the accuracy rate is about 85%.
其他摘要:At present, the existing indicator diagram can only be used for expost judgment and can not give early warning, and the influencing factors of pump inspection period are nonlinear, multi constrained and multi variable. In this paper, big data machine learning method is used to carry out relevant research. Firstly, around the influencing factors of pump inspection cycle, relevant data are collected and the evaluation index of pump inspection cycle is designed. Then, based on feature engineering technology, the production parameters of oil wells in different pump inspection periods are calculated to form the analysis sample set of pump inspection period. Finally, the early warning model of pump inspection period is established by using machine learning technology. The experimental results show that: the pump inspection cycle early warning model established by stochastic forest algorithm can identify the pump inspection status of single well, and the accuracy rate is about 85%.