摘要:Hydrophobic mesoporous silica nanowires were synthesis and then employed as support for immobilization of lipase from Candida antarctica via covalent bonding (CALB@MSW). The parameters were optimized and the optimum conditions were as follows: GA concentration 5.5 wt.%, activation time 60 min and CALB concentration 4 mg/mL. Under these conditions, the protein loading and specific activity of CALB@MSW were 138.3 mg/gsupport and 41.1 U/mg support , respectively. Compared with free CALB, CALB@MSW showed better thermal stability and pH stability. The maximum yield of biodiesel catalytic by CALB@MSW was 93.4 %. After reused 8 times, CALB@MSW still remained 95.75 % initial activity showing better stability than free CALB.
其他摘要:Hydrophobic mesoporous silica nanowires were synthesis and then employed as support for immobilization of lipase from Candida antarctica via covalent bonding (CALB@MSW). The parameters were optimized and the optimum conditions were as follows: GA concentration 5.5 wt.%, activation time 60 min and CALB concentration 4 mg/mL. Under these conditions, the protein loading and specific activity of CALB@MSW were 138.3 mg/gsupport and 41.1 U/mg support , respectively. Compared with free CALB, CALB@MSW showed better thermal stability and pH stability. The maximum yield of biodiesel catalytic by CALB@MSW was 93.4 %. After reused 8 times, CALB@MSW still remained 95.75 % initial activity showing better stability than free CALB.