首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Sizing and performance analyses of a combined heating and cooling system with the integration of short- and long-term storages
  • 本地全文:下载
  • 作者:Mohammad Shakerin ; Vilde Eikeskog ; Yantong Li
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:246
  • 页码:7004
  • DOI:10.1051/e3sconf/202124607004
  • 出版社:EDP Sciences
  • 摘要:Technological advancements in the utilization of renewable energy sources have unveiled potentials for increasing building energy efficiency. Integrating heat pump-based energy systems with thermal storages is a suitable option to meet the thermal requirements of modern buildings and exploiting the available renewable energy sources. However, how to size the main components of a heat pump-based energy system with the integration of short- and long-term storages is not yet well explored. Therefore, this study focused on the design and performance analyses of an integrated heating and cooling system consist of a heat pump, borehole long-term thermal storage, and hot water tank short-term thermal. Heat pump models were introduced as parametric models based on the producer data. The dynamic thermal model of the energy system was developed and analysed in MATLAB. Different combinations of heating and cooling loads were tested. Integration of cooling and heating systems was discussed through different operation strategies and challenges were addressed. The results of the parametric analysis identified the key parameters affecting the design of components and efficiency of the system. Moreover, the results showed that lower cooling to heating load ratio leads to an excessive reduction of the ground temperature and overall efficiency over the long-term operation.
  • 其他摘要:Technological advancements in the utilization of renewable energy sources have unveiled potentials for increasing building energy efficiency. Integrating heat pump-based energy systems with thermal storages is a suitable option to meet the thermal requirements of modern buildings and exploiting the available renewable energy sources. However, how to size the main components of a heat pump-based energy system with the integration of short- and long-term storages is not yet well explored. Therefore, this study focused on the design and performance analyses of an integrated heating and cooling system consist of a heat pump, borehole long-term thermal storage, and hot water tank short-term thermal. Heat pump models were introduced as parametric models based on the producer data. The dynamic thermal model of the energy system was developed and analysed in MATLAB. Different combinations of heating and cooling loads were tested. Integration of cooling and heating systems was discussed through different operation strategies and challenges were addressed. The results of the parametric analysis identified the key parameters affecting the design of components and efficiency of the system. Moreover, the results showed that lower cooling to heating load ratio leads to an excessive reduction of the ground temperature and overall efficiency over the long-term operation.
国家哲学社会科学文献中心版权所有