首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:The effect of biogas fermentation assisted by simple solar greenhouse
  • 本地全文:下载
  • 作者:Xiaolu Shao ; Xing Su ; Shaochen Tian
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:246
  • 页码:3001
  • DOI:10.1051/e3sconf/202124603001
  • 出版社:EDP Sciences
  • 摘要:Biogas fermentation rate is largely affected by environment temperature, causing a much more difficult production of biogas digesters in cold winter, for most regions in China. Combining the abundant solar energy resources and biomass dry anaerobic fermentation together, solar thermal energy can guarantee the production of biogas in winter. With this method, the prediction of the appropriate fermentation temperature is required. In this study, the effect of temperature on biogas fermentation was studied. To predict the fermentation temperature, a heat transfer model of biogas fermentation based on a project in city Xuzhou, which assisted with a simple solar greenhouse, was established according to the heat transfer theory. The maximum difference between the measured and calculated fermentation temperature was 2%. The effect of biogas fermentation assisted by simple solar greenhouse in typical city of different climate zones, including severe cold region, cold region and hot summer and cold winter region, was studied with the combination of heat transfer model and temperature-based biogas production rates prediction model. The results showed that, the gas production rate of biogas fermentation increases with the increase of temperature in a certain range. Assisted by simple solar greenhouse, the biogas digester temperature is increased by 6~8°C compared with the previous one, ensuring a better daily gas production rate of 0.5~0.7m 3 /m 3 in winter.
  • 其他摘要:Biogas fermentation rate is largely affected by environment temperature, causing a much more difficult production of biogas digesters in cold winter, for most regions in China. Combining the abundant solar energy resources and biomass dry anaerobic fermentation together, solar thermal energy can guarantee the production of biogas in winter. With this method, the prediction of the appropriate fermentation temperature is required. In this study, the effect of temperature on biogas fermentation was studied. To predict the fermentation temperature, a heat transfer model of biogas fermentation based on a project in city Xuzhou, which assisted with a simple solar greenhouse, was established according to the heat transfer theory. The maximum difference between the measured and calculated fermentation temperature was 2%. The effect of biogas fermentation assisted by simple solar greenhouse in typical city of different climate zones, including severe cold region, cold region and hot summer and cold winter region, was studied with the combination of heat transfer model and temperature-based biogas production rates prediction model. The results showed that, the gas production rate of biogas fermentation increases with the increase of temperature in a certain range. Assisted by simple solar greenhouse, the biogas digester temperature is increased by 6~8°C compared with the previous one, ensuring a better daily gas production rate of 0.5~0.7m 3 /m 3 in winter.
国家哲学社会科学文献中心版权所有