首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Continuous automated ventilation heat recovery efficiency performance assessment using building monitoring system
  • 本地全文:下载
  • 作者:Tuule Mall Kull ; Alo Mikola ; Andres Tukia
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:246
  • 页码:10006
  • DOI:10.1051/e3sconf/202124610006
  • 出版社:EDP Sciences
  • 摘要:The performance of ventilation heat recovery has high impact to the total energy consumption of modern buildings and its sub-optimal performance results in a remarkable energy penalty. There are several issues, which can significantly affect the heat recovery efficiency such as the inaccuracy of sensors, errors in control systems, mechanical defects and incorrect setting of the system. In addition, the direct comparison of the designed and measured heat recovery efficiency is not necessarily meaningful due to varying boundary conditions e.g. mass flow rates. The main focus of this paper is to develop and demonstrate a simple automated method for monitoring the heat recovery efficiency of ventilation units using building monitoring system (BMS). As the supply and extract air mass flows and temperatures may differ from the calculated initial design parameters, the proposed solution is to analyse the heat recovery efficiency using the number of transfer unit (NTU) method. With this method the efficiency is always calculated by the limiting mass flow, meaning that the warm exhaust air can not transfer more energy to the cold supply air than it is able to contain. As a result, the NTU method gives us the possibility to continuously compare the result to the temperature efficiency declared by the producer of the unit. The developed method demonstrated that the application of NTU method enables identifying sub-optimal performance of ventilation heat recovery, which would not have been revealed by direct comparison of temperature efficiencies. In some cases, low measured temperature efficiency was associated with problems not connected to the heat recovery heat exchanger. The method also enabled to estimate the additional heating costs due to the decreased heat recovery efficiency.
  • 其他摘要:The performance of ventilation heat recovery has high impact to the total energy consumption of modern buildings and its sub-optimal performance results in a remarkable energy penalty. There are several issues, which can significantly affect the heat recovery efficiency such as the inaccuracy of sensors, errors in control systems, mechanical defects and incorrect setting of the system. In addition, the direct comparison of the designed and measured heat recovery efficiency is not necessarily meaningful due to varying boundary conditions e.g. mass flow rates. The main focus of this paper is to develop and demonstrate a simple automated method for monitoring the heat recovery efficiency of ventilation units using building monitoring system (BMS). As the supply and extract air mass flows and temperatures may differ from the calculated initial design parameters, the proposed solution is to analyse the heat recovery efficiency using the number of transfer unit (NTU) method. With this method the efficiency is always calculated by the limiting mass flow, meaning that the warm exhaust air can not transfer more energy to the cold supply air than it is able to contain. As a result, the NTU method gives us the possibility to continuously compare the result to the temperature efficiency declared by the producer of the unit. The developed method demonstrated that the application of NTU method enables identifying sub-optimal performance of ventilation heat recovery, which would not have been revealed by direct comparison of temperature efficiencies. In some cases, low measured temperature efficiency was associated with problems not connected to the heat recovery heat exchanger. The method also enabled to estimate the additional heating costs due to the decreased heat recovery efficiency.
国家哲学社会科学文献中心版权所有