摘要:Most Finnish residential buildings have been built before ventilation heat recovery options became mandatory. Exhaust air heat pumps are an effective way to reduce emissions, but they cannot cover all heating demand. Ground-source heat pumps can be designed to meet all loads, but they require corresponding amounts of space both above and below ground. This simulation study combines residential ventilation and sewage waste heat with a ground-source heat pump system to improve system sustainability and cost-effectiveness. A hybrid waste heat and ground-source heat pump system was shown to have 20% lower life cycle costs compared to a pure ground-source heat pump system. It also maintained sustainable ground temperature levels over the long term, while reducing above-ground space requirements by 95%.
其他摘要:Most Finnish residential buildings have been built before ventilation heat recovery options became mandatory. Exhaust air heat pumps are an effective way to reduce emissions, but they cannot cover all heating demand. Ground-source heat pumps can be designed to meet all loads, but they require corresponding amounts of space both above and below ground. This simulation study combines residential ventilation and sewage waste heat with a ground-source heat pump system to improve system sustainability and cost-effectiveness. A hybrid waste heat and ground-source heat pump system was shown to have 20% lower life cycle costs compared to a pure ground-source heat pump system. It also maintained sustainable ground temperature levels over the long term, while reducing above-ground space requirements by 95%.