首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Rapid estimation of tsunami earthquake magnitudes at local distance
  • 本地全文:下载
  • 作者:Akio Katsumata ; Masayuki Tanaka ; Takahito Nishimiya
  • 期刊名称:Earth, Planets and Space
  • 电子版ISSN:1880-5981
  • 出版年度:2021
  • 卷号:73
  • 期号:1
  • 页码:1-15
  • DOI:10.1186/s40623-021-01391-7
  • 出版社:Springer Verlag
  • 摘要:Abstract A tsunami earthquake is an earthquake event that generates abnormally high tsunami waves considering the amplitude of the seismic waves. These abnormally high waves relative to the seismic wave amplitude are related to the longer rupture duration of such earthquakes compared with typical events. Rapid magnitude estimation is essential for the timely issuance of effective tsunami warnings for tsunami earthquakes. For local events, event magnitude estimated from the observed displacement amplitudes of the seismic waves, which can be obtained before estimation of the seismic moment, is often used for the first tsunami warning. However, because the observed displacement amplitude is approximately proportional to the moment rate, conventional magnitudes of tsunami earthquakes estimated based on the seismic wave amplitude tend to underestimate the event size. To overcome this problem, we investigated several methods of magnitude estimation, including magnitudes based on long-period displacement, integrated displacement, and multiband amplitude distribution. We tested the methods using synthetic waveforms calculated from finite fault models of tsunami earthquakes. We found that methods based on observed amplitudes could not estimate magnitude properly, but the method based on the multiband amplitude distribution gave values close to the moment magnitude for many tsunami earthquakes. In this method, peak amplitudes of bandpass filtered waveforms are compared with those of synthetic records for an assumed source duration and fault mechanism. We applied the multiband amplitude distribution method to the records of events that occurred around the Japanese Islands and to those of tsunami earthquakes, and confirmed that this method could be used to estimate event magnitudes close to the moment magnitudes.
  • 其他摘要:Abstract A tsunami earthquake is an earthquake event that generates abnormally high tsunami waves considering the amplitude of the seismic waves. These abnormally high waves relative to the seismic wave amplitude are related to the longer rupture duration of such earthquakes compared with typical events. Rapid magnitude estimation is essential for the timely issuance of effective tsunami warnings for tsunami earthquakes. For local events, event magnitude estimated from the observed displacement amplitudes of the seismic waves, which can be obtained before estimation of the seismic moment, is often used for the first tsunami warning. However, because the observed displacement amplitude is approximately proportional to the moment rate, conventional magnitudes of tsunami earthquakes estimated based on the seismic wave amplitude tend to underestimate the event size. To overcome this problem, we investigated several methods of magnitude estimation, including magnitudes based on long-period displacement, integrated displacement, and multiband amplitude distribution. We tested the methods using synthetic waveforms calculated from finite fault models of tsunami earthquakes. We found that methods based on observed amplitudes could not estimate magnitude properly, but the method based on the multiband amplitude distribution gave values close to the moment magnitude for many tsunami earthquakes. In this method, peak amplitudes of bandpass filtered waveforms are compared with those of synthetic records for an assumed source duration and fault mechanism. We applied the multiband amplitude distribution method to the records of events that occurred around the Japanese Islands and to those of tsunami earthquakes, and confirmed that this method could be used to estimate event magnitudes close to the moment magnitudes.
国家哲学社会科学文献中心版权所有