出版社:Grupo de Pesquisa Metodologias em Ensino e Aprendizagem em Ciências
摘要:Objective: evaluate the potential use of machine learning and the automatic selection of attributes in discrimination of individuals with and without Chagas disease based on clinical and sociodemographic data. Method: After the evaluation of many learning algorithms, they have been chosen and the comparison between neural network Multilayer Perceptron (MLP) and the Linear Regression (LR) was done, seeking which one presents the best performance for prediction of the Chagas disease diagnosis, being used the criteria of sensitivity, specificity, accuracy and area under the ROC curve (AUC). Generated models were also compared, using the methods of automatic selection of attributes: Forward Selection, Backward Elimination and genetic algorithm. Results: The best results were achieved using the genetic algorithm and the MLP presented accuracy of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUC of 0.861. Conclusion: It was proved to be a very interesting performance, given the nature of the data used for sorting and use in public health, glimpsing its relevance in the medical field, enabling an approximation of prevalence that justifies the actions of active search of individuals Chagas disease patients for treatment and prevention.