摘要:Abstract Soil moisture predictability on seasonal to decadal (S2D) continuum timescales over North America is examined from the Community Earth System Modeling (CESM) experiments. The effects of ocean and land initializations are disentangled using two large ensemble datasets—initialized and uninitialized experiments from the CESM. We find that soil moisture has significant predictability on S2D timescales despite limited predictability in precipitation. On sub-seasonal to seasonal timescales, precipitation variability is an order of magnitude greater than soil moisture, suggesting land surface processes, including soil moisture memory, reemergence, land–atmosphere interactions, transform a less predictable precipitation signal into a more predictable soil moisture signal.
其他摘要:Abstract Soil moisture predictability on seasonal to decadal (S2D) continuum timescales over North America is examined from the Community Earth System Modeling (CESM) experiments. The effects of ocean and land initializations are disentangled using two large ensemble datasets—initialized and uninitialized experiments from the CESM. We find that soil moisture has significant predictability on S2D timescales despite limited predictability in precipitation. On sub-seasonal to seasonal timescales, precipitation variability is an order of magnitude greater than soil moisture, suggesting land surface processes, including soil moisture memory, reemergence, land–atmosphere interactions, transform a less predictable precipitation signal into a more predictable soil moisture signal.