首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:A flexible, open, and interactive digital platform to support online and blended experiential learning environments: Thinglink and thin sections
  • 本地全文:下载
  • 作者:Adam J. Jeffery ; Steven L. Rogers ; Kelly L. A. Jeffery
  • 期刊名称:Geoscience Communication
  • 印刷版ISSN:2569-7102
  • 电子版ISSN:2569-7110
  • 出版年度:2021
  • 卷号:4
  • 期号:1
  • 页码:95-110
  • DOI:10.5194/gc-4-95-2021
  • 出版社:Copernicus Publications
  • 摘要:This study investigates the potential value of, and provides a method for, the creation of flexible, digital, and asynchronous platforms to create student-centred materials for use in an online and/or blended learning environment. We made use of Thinglink to create a “virtual microscope” resource for geology and associated courses in higher education. This is achieved through the dissemination of a simple learning resource comprising interactive imagery and audio. The visual analysis of rocks under the microscope, termed thin-section petrography, is a fundamental component in geology programmes in higher education, with key skills which are transferable with other fields such as material science, biology, and forensic science. However, learning environments and activities in this field are often dictated by the requirement for access to microscope facilities and supplementary resources which are highly variable in their academic level, availability, design, and scale, ranging from traditional textbooks to online resources. A resource was created which allows individuals to experience some of the aspects of petrographic microscopy in a digital manner. In particular, specific features of the materials observed and how microscopes work were included. The resource was disseminated to a population of learners and educators, who provided responses to a questionnaire. Responses were overwhelmingly positive and indicate considerable interest from learner and teacher alike. Critical areas for improvement include the need for clarity in the user interface and the inclusion of a recorded human voice rather than automated text narration. This study highlights the need for, and benefits of, interactive online learning resources in petrology and associated fields. This type of resource has positive implications for the flexibility, inclusivity, and accessibility of teaching materials. Such resources may prove particularly valuable when distance learning is unavoidable (e.g. the COVID-19 crisis) and/or hybrid, blended learning environments are being deployed. The method and platform used in this study are highly transferable to other subject areas (or other areas of the geosciences).
国家哲学社会科学文献中心版权所有