首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities
  • 本地全文:下载
  • 作者:Anna-Louise Reysenbach ; Emily St. John ; Jennifer Meneghin
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:51
  • 页码:32627-32638
  • DOI:10.1073/pnas.2019021117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
  • 关键词:metagenomics ; deep-sea hydrothermal ; thermophiles ; Archaea ; volcanics
国家哲学社会科学文献中心版权所有