期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:49
页码:30918-30927
DOI:10.1073/pnas.2014627117
出版社:The National Academy of Sciences of the United States of America
摘要:We propose a local conformal autoencoder (LOCA) for standardized data coordinates. LOCA is a deep learning-based method for obtaining standardized data coordinates from scientific measurements. Data observations are modeled as samples from an unknown, nonlinear deformation of an underlying Riemannian manifold, which is parametrized by a few normalized, latent variables. We assume a repeated measurement sampling strategy, common in scientific measurements, and present a method for learning an embedding in R d that is isometric to the latent variables of the manifold. The coordinates recovered by our method are invariant to diffeomorphisms of the manifold, making it possible to match between different instrumental observations of the same phenomenon. Our embedding is obtained using LOCA, which is an algorithm that learns to rectify deformations by using a local z-scoring procedure, while preserving relevant geometric information. We demonstrate the isometric embedding properties of LOCA in various model settings and observe that it exhibits promising interpolation and extrapolation capabilities, superior to the current state of the art. Finally, we demonstrate LOCA’s efficacy in single-site Wi-Fi localization data and for the reconstruction of three-dimensional curved surfaces from two-dimensional projections.