期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:48
页码:30186-30190
DOI:10.1073/pnas.2010812117
出版社:The National Academy of Sciences of the United States of America
摘要:We study the propagation of in-plane elastic waves in a soft thin strip, a specific geometrical and mechanical hybrid framework which we expect to exhibit a Dirac-like cone. We separate the low frequencies guided modes (typically 100 Hz for a 1-cm-wide strip) and obtain experimentally the full dispersion diagram. Dirac cones are evidenced together with other remarkable wave phenomena such as negative wave velocity or pseudo-zero group velocity (ZGV). Our measurements are convincingly supported by a model (and numerical simulation) for both Neumann and Dirichlet boundary conditions. Finally, we perform one-way chiral selection by carefully setting the source position and polarization. Therefore, we show that soft materials support atypical wave-based phenomena, which is all of the more interesting as they make most of the biological tissues.