首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Hidden symmetries generate rigid folding mechanisms in periodic origami
  • 本地全文:下载
  • 作者:James McInerney ; Bryan Gin-ge Chen ; Louis Theran
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:48
  • 页码:30252-30259
  • DOI:10.1073/pnas.2005089117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell–Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origami’s vertices. This supports the recent result by Tachi [T. Tachi, Origami 6, 97–108 (2015)] which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero-energy deformations in the bulk that may be used to reconfigure the origami sheet.
  • 关键词:origami ; mechanisms ; rigid folding ; topological polarization
国家哲学社会科学文献中心版权所有