期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:46
页码:28625-28631
DOI:10.1073/pnas.2009238117
出版社:The National Academy of Sciences of the United States of America
摘要:Evidence linking amyloid beta (Aβ) cellular uptake and toxicity has burgeoned, and mechanisms underlying this association are subjects of active research. Two major, interconnected questions are whether Aβ uptake is aggregation-dependent and whether it is sequence-specific. We recently reported that the neuronal uptake of Aβ depends significantly on peptide chirality, suggesting that the process is predominantly receptor-mediated. Over the past decade, the cellular prion protein (PrP C ) has emerged as an important mediator of Aβ-induced toxicity and of neuronal Aβ internalization. Here, we report that the soluble, nonfibrillizing Aβ (1–30) peptide recapitulates full-length Aβ stereoselective cellular uptake, allowing us to decouple aggregation from cellular, receptor-mediated internalization. Moreover, we found that Aβ (1–30) uptake is also dependent on PrP C expression. NMR-based molecular-level characterization identified the docking site on PrP C that underlies the stereoselective binding of Aβ (1–30). Our findings therefore identify a specific sequence within Aβ that is responsible for the recognition of the peptide by PrP C , as well as PrP C -dependent cellular uptake. Further uptake stereodifferentiation in PrP C -free cells points toward additional receptor-mediated interactions as likely contributors for Aβ cellular internalization. Taken together, our results highlight the potential of targeting cellular surface receptors to inhibit Aβ cellular uptake as an alternative route for future therapeutic development for Alzheimer’s disease.