期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:45
页码:28366-28373
DOI:10.1073/pnas.2002783117
出版社:The National Academy of Sciences of the United States of America
摘要:Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus , we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.
关键词:type IV pilus ; cell motility ; small GTPase ; Myxococcus xanthus