期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:44
页码:27231-27237
DOI:10.1073/pnas.2017646117
出版社:The National Academy of Sciences of the United States of America
摘要:We present a comprehensive theoretical study of the phase diagram of a system of many Bose particles interacting with a two-body central potential of the so-called Lennard-Jones form. First-principles path-integral computations are carried out, providing essentially exact numerical results on the thermodynamic properties. The theoretical model used here provides a realistic and remarkably general framework for describing simple Bose systems ranging from crystals to normal fluids to superfluids and gases. The interplay between particle interactions on the one hand and quantum indistinguishability and delocalization on the other hand is characterized by a single quantumness parameter, which can be tuned to engineer and explore different regimes. Taking advantage of the rare combination of the versatility of the many-body Hamiltonian and the possibility for exact computations, we systematically investigate the phases of the systems as a function of pressure (P) and temperature (T), as well as the quantumness parameter. We show how the topology of the phase diagram evolves from the known case of 4 He, as the system is made more (and less) quantum, and compare our predictions with available results from mean-field theory. Possible realization and observation of the phases and physical regimes predicted here are discussed in various experimental systems, including hypothetical muonic matter.