首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Global potential, topology, and pattern selection in a noisy stabilized Kuramoto–Sivashinsky equation
  • 本地全文:下载
  • 作者:Yong-Cong Chen ; Chunxiao Shi ; J. M. Kosterlitz
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:38
  • 页码:23227-23234
  • DOI:10.1073/pnas.2012364117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We formulate a general method to extend the decomposition of stochastic dynamics developed by Ao et al. [ J. Phys. Math. Gen. 37, L25–L30 (2004)] to nonlinear partial differential equations which are nonvariational in nature and construct the global potential or Lyapunov functional for a noisy stabilized Kuramoto–Sivashinsky equation. For values of the control parameter where singly periodic stationary solutions exist, we find a topological network of a web of saddle points of stationary states interconnected by unstable eigenmodes flowing between them. With this topology, a global landscape of the steady states is found. We show how to predict the noise-selected pattern which agrees with those from stochastic simulations. Our formalism and the topology might offer an approach to explore similar systems, such as the Navier Stokes equation.
  • 关键词:Kuramoto–Sivashinsky equation ; pattern selection ; topology ; stochastic decomposition ; Lyapunov functional
国家哲学社会科学文献中心版权所有