期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:39
页码:24050-24054
DOI:10.1073/pnas.2008143117
出版社:The National Academy of Sciences of the United States of America
摘要:Near-zero-index (NZI) supercoupling, the transmission of electromagnetic waves inside a waveguide irrespective of its shape, is a counterintuitive wave effect that finds applications in optical interconnects and engineering light–matter interactions. However, there is a limited knowledge on the local properties of the electromagnetic power flow associated with supercoupling phenomena. Here, we theoretically demonstrate that the power flow in two-dimensional (2D) NZI media is fully analogous to that of an ideal fluid. This result opens an interesting connection between NZI electrodynamics and fluid dynamics. This connection is used to explain the robustness of supercoupling against any geometrical deformation, to enable the analysis of the electromagnetic power flow around complex geometries, and to examine the power flow when the medium is doped with dielectric particles. Finally, electromagnetic ideal fluids where the turbulence is intrinsically inhibited might offer interesting technological possibilities, e.g., in the design of optical forces and for optical systems operating under extreme mechanical conditions.
关键词:near-zero-index media ; metamaterials ; nanophotonics ; fluid dynamics