首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change
  • 本地全文:下载
  • 作者:Avery W. Driscoll ; Nicholas Q. Bitter ; Darren R. Sandquist
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:31
  • 页码:18161-18168
  • DOI:10.1073/pnas.2008345117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:While tree rings have enabled interannual examination of the influence of climate on trees, this is not possible for most shrubs. Here, we leverage a multidecadal record of annual foliar carbon isotope ratio collections coupled with 39 y of survey data from two populations of the drought-deciduous desert shrub Encelia farinosa to provide insight into water-use dynamics and climate. This carbon isotope record provides a unique opportunity to examine the response of desert shrubs to increasing temperature and water stress in a region where climate is changing rapidly. Population mean carbon isotope ratios fluctuated predictably in response to interannual variations in temperature, vapor pressure deficit, and precipitation, and responses were similar among individuals. We leveraged the well-established relationships between leaf carbon isotope ratios and the ratio of intracellular to ambient CO 2 concentrations to calculate intrinsic water-use efficiency (iWUE) of the plants and to quantify plant responses to long-term environmental change. The population mean iWUE value increased by 53 to 58% over the study period, much more than the 20 to 30% increase that has been measured in forests [J. Peñuelas, J. G. Canadell, R. Ogaya, Glob. Ecol. Biogeogr. 20, 597–608 (2011)]. Changes were associated with both increased CO 2 concentration and increased water stress. Individuals whose lifetimes spanned the entire study period exhibited increases in iWUE that were very similar to the population mean, suggesting that there was significant plasticity within individuals rather than selection at the population scale.
  • 关键词:Mojave Desert ; iWUE ; stomatal conductance ; carbon isotopes ; climate change
国家哲学社会科学文献中心版权所有