首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins
  • 本地全文:下载
  • 作者:Zhuohao Zhang ; Zhuoyue Chen ; Yu Wang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:31
  • 页码:18310-18316
  • DOI:10.1073/pnas.2007032117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Bionic electronic skin (E-skin) that could convert external physical or mechanical stimuli into output signals has a wide range of applications including wearable devices, artificial prostheses, software robots, etc. Here, we present a chameleon-inspired multifunctional E-skin based on hydroxypropyl cellulose (HPC), Poly(Acrylamide-co-Acrylic acid) (PACA), and carbon nanotubes (CNTs) composited liquid-crystal hydrogel. We found that the HPC could still form cholesteric liquid-crystal photonic structures with the CNTs additive for enhancing their color saturation and PACA polymerization for locating their assembled periodic structures. As the composite hydrogel containing HPC elements and the PACA scaffold responds to different stimuli, such as temperature variations, mechanical pressure, and tension, it could correspondingly change its volume or internal nanostructure and report these as visible color switches. In addition, due to the additive of CNTs, the composite hydrogel could also output these stimuli as electrical resistance signals. Thus, the hydrogel E-skins had the ability of quantitatively feeding back external stimuli through electrical resistance as well as visually mapping the stimulating sites by color variation. This dual-signal sensing provides the ability of visible-user interaction as well as antiinterference, endowing the multifunctional E-skin with great application prospects.
  • 关键词:bioinspired ; cellulose ; liquid crystal ; electrical skin ; carbon nanotube
国家哲学社会科学文献中心版权所有