期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:31
页码:18347-18354
DOI:10.1073/pnas.2001740117
出版社:The National Academy of Sciences of the United States of America
摘要:Novel biotechnologies are required to remediate iron ore mines and address the increasing number of tailings (mine waste) dam collapses worldwide. In this study, we aimed to accelerate iron reduction and oxidation to stabilize an artificial slope. An open-air bioreactor was inoculated with a mixed consortium of microorganisms capable of reducing iron. Fluid from the bioreactor was allowed to overflow onto the artificial slope. Carbon sources from the bioreactor fluid promoted the growth of a surface biofilm within the artificial slope, which naturally aggregated the crushed grains. The biofilms provided an organic framework for the nucleation of iron oxide minerals. Iron-rich biocements stabilized the artificial slope and were significantly more resistant to physical deformation compared with the control experiment. These biotechnologies highlight the potential to develop strategies for mine remediation and waste stabilization by accelerating the biogeochemical cycling of iron.
关键词:mine remediation ; biocement ; scanning electron microscopy ; microfossil ; iron reduction