期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:27
页码:15702-15711
DOI:10.1073/pnas.1922821117
出版社:The National Academy of Sciences of the United States of America
摘要:Mammalian cells contain two isoforms of RNA polymerase III (Pol III) that differ in only a single subunit, with POLR3G in one form (Pol IIIα) and the related POLR3GL in the other form (Pol IIIβ). Previous research indicates that POLR3G and POLR3GL are differentially expressed, with POLR3G expression being highly enriched in embryonic stem cells (ESCs) and tumor cells relative to the ubiquitously expressed POLR3GL. To date, the functional differences between these two subunits remain largely unexplored, especially in vivo. Here, we show that POLR3G and POLR3GL containing Pol III complexes bind the same target genes and assume the same functions both in vitro and in vivo and, to a significant degree, can compensate for each other in vivo. Notably, an observed defect in the differentiation ability of POLR3G knockout ESCs can be rescued by exogenous expression of POLR3GL. Moreover, whereas POLR3G knockout mice die at a very early embryonic stage, POLR3GL knockout mice complete embryonic development without noticeable defects but die at about 3 wk after birth with signs of both general growth defects and potential cerebellum-related neuronal defects. The different phenotypes of the knockout mice likely reflect differential expression levels of POLR3G and POLR3GL across developmental stages and between tissues and insufficient amounts of total Pol III in vivo.
关键词:RNA polymerase III ; POLR3G ; POLR3GL ; ESC ; development