期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:26
页码:15047-15054
DOI:10.1073/pnas.1910278117
出版社:The National Academy of Sciences of the United States of America
摘要:Tamoxifen, a widely used modulator of the estrogen receptor (ER), targets ER-positive breast cancer preferentially. We used a powerful validation-based insertion mutagenesis method to find that expression of a dominant-negative, truncated form of the histone deacetylase ZIP led to resistance to tamoxifen. Consistently, increased expression of full-length ZIP gives the opposite phenotype, inhibiting the expression of genes whose products mediate resistance. An important example is JAK2 . By binding to two specific sequences in the promoter, ZIP suppresses JAK2 expression. Increased expression and activation of JAK2 when ZIP is inhibited lead to increased STAT3 phosphorylation and increased resistance to tamoxifen, both in cell culture experiments and in a mouse xenograft model. Furthermore, data from human tumors are consistent with the conclusion that decreased expression of ZIP leads to resistance to tamoxifen in ER-positive breast cancer.