首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior
  • 本地全文:下载
  • 作者:Yushu Wang ; Wenwen Huang ; Yu Wang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:25
  • 页码:14602-14608
  • DOI:10.1073/pnas.2002996117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk–elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.
  • 关键词:bionic ; stimuli responsive ; biopolymers ; reversible ; actuation
国家哲学社会科学文献中心版权所有