首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”
  • 本地全文:下载
  • 作者:Matthew R. Warke ; Tommaso Di Rocco ; Aubrey L. Zerkle
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:24
  • 页码:13314-13320
  • DOI:10.1073/pnas.2003090117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first “snowball Earth” global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate change. Here we present temporally resolved quadruple sulfur isotope measurements (δ 34 S, ∆ 33 S, and ∆ 36 S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations on the Fennoscandian Shield, northwest Russia, that address this issue. Sulfides in the former preserve evidence of mass-independent fractionation of sulfur isotopes (S-MIF) falling within uncertainty of the Archean reference array with a ∆ 36 S/∆ 33 S slope of −1.8 and have small negative ∆ 33 S values, whereas in the latter mass-dependent fractionation of sulfur isotopes (S-MDF) is evident, with a ∆ 36 S/∆ 33 S slope of −8.8. These trends, combined with geochronological constraints, place the S-MIF/S-MDF transition, the key indicator of the GOE, between 2,501.5 ± 1.7 Ma and 2,434 ± 6.6 Ma. These are the tightest temporal and stratigraphic constraints yet for the S-MIF/S-MDF transition and show that its timing in Fennoscandia is consistent with the S-MIF/S-MDF transition in North America and South Africa. Further, the glacigenic part of the Polisarka Formation occurs 60 m above the sedimentary succession containing S-MDF signals. Hence, our findings confirm unambiguously that the S-MIF/S-MDF transition preceded the Paleoproterozoic snowball Earth. Resolution of this temporal relationship constrains cause-and-effect drivers of Earth’s oxygenation, specifically ruling out conceptual models in which global glaciation precedes or causes the evolution of oxygenic photosynthesis.
  • 关键词:quadruple sulfur isotopes ; mass independent fractionation ; Great Oxidation Event ; snowball Earth
国家哲学社会科学文献中心版权所有