首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
  • 本地全文:下载
  • 作者:Agostina J. Larrazabal ; Nicolás Nieto ; Victoria Peterson
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:23
  • 页码:12592-12594
  • DOI:10.1073/pnas.1919012117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis. However, little attention is paid to the way databases are collected and how this may influence the performance of AI systems. Our study sheds light on the importance of gender balance in medical imaging datasets used to train AI systems for computer-assisted diagnosis. We provide empirical evidence supported by a large-scale study, based on three deep neural network architectures and two well-known publicly available X-ray image datasets used to diagnose various thoracic diseases under different gender imbalance conditions. We found a consistent decrease in performance for underrepresented genders when a minimum balance is not fulfilled. This raises the alarm for national agencies in charge of regulating and approving computer-assisted diagnosis systems, which should include explicit gender balance and diversity recommendations. We also establish an open problem for the academic medical image computing community which needs to be addressed by novel algorithms endowed with robustness to gender imbalance.
  • 关键词:gendered innovations ; deep learning ; computer-aided diagnosis ; medical image analysis ; gender bias
国家哲学社会科学文献中心版权所有