首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus
  • 本地全文:下载
  • 作者:Corleone S. Delaveris ; Elizabeth R. Webster ; Steven M. Banik
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:23
  • 页码:12643-12650
  • DOI:10.1073/pnas.1921962117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membrane-tethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic’s conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host–pathogen interactions.
  • 关键词:influenza A virus ; mucin ; glycobiology
国家哲学社会科学文献中心版权所有