首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Catalytic prior distributions with application to generalized linear models
  • 本地全文:下载
  • 作者:Dongming Huang ; Nathan Stein ; Donald B. Rubin
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:22
  • 页码:12004-12010
  • DOI:10.1073/pnas.1920913117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:A catalytic prior distribution is designed to stabilize a high-dimensional “working model” by shrinking it toward a “simplified model.” The shrinkage is achieved by supplementing the observed data with a small amount of “synthetic data” generated from a predictive distribution under the simpler model. We apply this framework to generalized linear models, where we propose various strategies for the specification of a tuning parameter governing the degree of shrinkage and study resultant theoretical properties. In simulations, the resulting posterior estimation using such a catalytic prior outperforms maximum likelihood estimation from the working model and is generally comparable with or superior to existing competitive methods in terms of frequentist prediction accuracy of point estimation and coverage accuracy of interval estimation. The catalytic priors have simple interpretations and are easy to formulate.
  • 关键词:Bayesian priors ; synthetic data ; stable estimation ; predictive distribution ; regularization
国家哲学社会科学文献中心版权所有