首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles
  • 本地全文:下载
  • 作者:Kayla J. Wolf ; Poojan Shukla ; Kelsey Springer
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:21
  • 页码:11432-11443
  • DOI:10.1073/pnas.1914294117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia. We observe these structures in continuous culture models and primary patient-derived tumor cells, as well as in synthetic HA matrix and organotypic brain slices. High-magnification and superresolution imaging reveals McTNs are dynamic, CD44-coated tubular protrusions containing microtubules and actin filaments, which respectively drive McTN extension and retraction. Molecular mechanistic studies reveal that McTNs are stabilized by an interplay between microtubule-driven protrusion, actomyosin-driven retraction, and CD44-mediated adhesion, where adhesive and cytoskeletal components are mechanistically coupled by an IQGAP1–CLIP170 complex. McTNs represent a previously unappreciated mechanism through which cells engage nanoporous HA matrix and may represent an important molecular target in physiology and disease.
  • 关键词:glioblastoma ; hyaluronic acid ; extracellular matrix ; mechanobiology ; motility
国家哲学社会科学文献中心版权所有