期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:20
页码:11085-11096
DOI:10.1073/pnas.1920154117
出版社:The National Academy of Sciences of the United States of America
摘要:Glioblastoma (GBM) is the deadliest adult brain cancer, and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 mo over surgery alone, but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype, and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP causes loss of radiation-induced Nanog mRNA expression, and activation of GSK3 with consecutive posttranslational reduction in p-Akt, Sox2, and β-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that the combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment-resistant, induced GICs (iGICs).