期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:17
页码:9440-9450
DOI:10.1073/pnas.1922472117
出版社:The National Academy of Sciences of the United States of America
摘要:Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta. In the low DNA polymerase alpha and delta strains, the APOBEC-induced mutations are concentrated on the lagging-strand template, whereas in the low DNA polymerase epsilon strain, mutations occur on the leading- and lagging-strand templates with similar frequencies. In addition, for most genes, the transcribed strand is mutagenized more frequently than the nontranscribed strand. Lastly, some of the APOBEC-induced clusters in strains with low levels of DNA polymerase alpha or delta are greater than 10 kb in length.
关键词:DNA replication stress ; single-stranded DNA ; APOBEC ; mutation ; DNA polymerase